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Introduction 

 Hall of Fame coach Vince Lombardi once said, “football is a game of inches and inches make the 

champion.” However, these inches aren’t easily earned, as luck plays a huge factor in determining a 

game’s outcome. Many of the most memorable moments in football history contain a great deal of luck, 

such as the famous helmet catch in Super Bowl XLII, or the band running onto the field during the final 

kickoff in the Stanford/Cal game known as “The Play”. These seemingly impossible moments in football 

history, coupled with unpredictable officiating, play calling, and other factors lead to imperfect 

measurements in ability. These imperfect predictions tend to exaggerate performance differences in 

match-ups, resulting in a phenomenon known as regression towards the mean. 

 This paper will investigate whether sports bettors and bookmakers consider this common 

phenomenon in spread and over/under betting on NCAA football games. 

Regression toward the Mean 

 Regression toward the mean refers to the theory that an extreme performance will revert closer 

to the mean over time. The first description of the common phenomenon came from Sir Francis Galton1 

in 1886 after studying parents’ heights compared to their children. Since then, studies of regression 

toward the mean have come from a wide range of disciplines.  

 For example, Linden2 found that subjects chosen to participate in health care interventions 

based on an initially high “risk” score tend to have lower actual risk. Pritchett and Summers3 examined 

regression toward the mean in national income growth of “middle-income” countries and showed that 

slowdowns in growth are the consequence of initial growth levels being extreme. Smith and Smith4 

found regression toward the mean in group test scores used to judge students, teachers, and schools.   

 Outlier performances tend to exaggerate high and low ability, thus leading to follow-up 

performances much closer to the mean. This tendency, if not properly considered, will overestimate 



extreme performances as a reflection of extreme ability. However, these spectacular performances tend 

to come from those with a much lower true ability than performance shows, and vice versa for 

extremely underwhelming performances. 

 Regression toward the mean in sports is common, but often misinterpreted. Some of the most 

popular application in sports are the “Sophomore Slump” referring to a player performing worse after 

their great rookie season, or the “Madden Curse”, where players on the cover of the popular sports 

game perform worse after appearing on the cover. These players had extraordinary performance 

throughout that year, leading them to regress back towards their true ability and seem worse than 

previously. 

There are many papers that consider NFL regression toward the mean. Sapra5 found that point 

spread lines are efficient in that they accurately reflect victory probability. Furthermore, he also found 

significant regression toward the mean season-over-season as reflected through team alpha, a metric 

used to show better or worse than expected records for a season. Vergin6 found that bettors tend to 

overreact to the recent positive performance, but not to recent negative performance. Lee and Smith7 

find that regression toward the mean is evident in the NFL and NBA using efficient spread and totals to 

achieve consistently positive win rates above the assumed 50% average.  

 The Smith and Capron8 model, where observed performance Y fluctuates randomly about ability 

µ, is: 

𝑌 = 𝜇 + 𝜀  

where 𝜀 is a random error term with an expected value of zero. A person’s ability is the expected value 

of their performance, and thus an unbiased predictor of performance. Since the variance of 

performance is: 



𝜎𝑌
2 =  𝜎𝜇

2 + 𝜎𝜀
2 

we see that performance varies by a greater amount that ability, thus extraordinary performance 

usually reflects more ordinary ability.  

However, aside from Lee and Smith7 and Smith and Capron8, few papers consider the potential 

profits of betting with regression toward the mean in mind. Smith9 finds that the average point spreads 

in the NFL range from -7 to +7. In contrast, NCAA football tends to range from -12 to +12, indicating a 

wider performance margin in college football. The main goal of this paper will be to examine whether 

the wider margin in college football yields similar results to the aforementioned papers regarding NFL 

wagers and regression toward the mean.  

Wagers in Football: Against the Spread and the Over/Under 

 This paper will focus on two major types of football bets. Betting against the spread (ATS) means 

betting on the predicted margin of victory. In the 2018 Bedlam Battle, where the Oklahoma Sooners 

played the Oklahoma State Cowboys, bookmakers set the spread, also referred to as the line, such that 

the Sooners were (-21.5), signifying a twenty-one-and-a-half-point favorite to win the game. Betting on 

Oklahoma paid out if the Sooners won the game by more than 21.5 points, whereas betting on 

Oklahoma State paid out if the Cowboys lost by less than 21.5, or won outright. Winning the bet is 

known as covering. The 0.5 in the line, known as the hook, is added by bookmakers for many games in 

order to avoid a break-even situation and better balance money on both sides. Otherwise, should the 

line have been Sooners (-21), and the games ends with the Sooners winning by 21 points exactly, the 

game is a push and the bettor neither wins nor loses.  

The other bet this paper considers is the over/under (O/U), also known as the total. This bet is 

based on the total number of points in the game. In the previous example, the total was 80, meaning 

that bettors would take the line based on whether they believed the total points would be over or under 



80. If the two teams combined for more than 80 points, the over bet would pay out; otherwise, if the 

teams combined for under 80 points, the under would pay out. 

The Bedlam Battle ended in a 48-47 victory for the Oklahoma Sooners over the Oklahoma State 

Cowboys. Using the above examples, the Cowboys covered the spread as they did not lose by more than 

21 points. Furthermore, the over covered, as the total for the game was 95 points.  

Betting Payouts and Theory 

 For both against the spread and over/under bets a bettor risks more than they will be paid 

should their bet cover. Typically, payouts are given in terms of $100. Given we are only focusing on the 

two aforementioned bet types, the only payout relevant to our analysis is (-110). This payout says that, 

in order to win $100, a bettor must risk $110. Therefore, in order to have a positive expected value 

given these bets, a bettor must win at least 52.38% of the time, as shown by: 

($100)𝑃 + (−$110)(1 − 𝑃) > 0 𝑖𝑓 𝑃 > 0.5238 

 Thus, if gambling the same amount each time, a bettor would have to win more than 52.38% of 

their bets to win money. Considering how much money is wagered and how few (if any) of the uber 

wealthy amassed their fortune through gambling, it can be inferred that winning this often is much 

harder than gamblers believe.  

 Bookmakers try to set the lines for both the spread and the total so there is approximately an 

even amount of money on both sides. If this is true, bookmakers can make a riskless profit regardless of 

the outcome of the game. The losers of the bet would give $100 to the winners, and the extra $10 risked 

in the bet goes to the bookmakers. A $10 profit on a $220 total results in a 4.55% vigorish for the 

bookmaker. The vigorish is compensation for bookmakers making the market and taking on the risk of 

poorly set lines. While this seems like free money, there have been many cases of uneven sets of money 



costing bookmakers millions. For example, English Premier League longshot Leicester City was set at a 

5000-to-1 odds of winning the league before the 2015-2016 season. After a historic run the team pulled 

off the impossible, forcing bookies to pay out extraordinary sums. The three largest bookmakers in 

England lost a combined $11.4 million10. 

 As Sapra5 showed, betting lines, on average, reflect the victory probability for the favorite team. 

Bookmakers consider every factor from of the game: injuries, location, coaching, player circumstance, 

rivalries, referees. This results in lines set such that the average bettor should have an equal chance of 

covering or losing the bet. Therefore, if a regression strategy wins more than 50% of the time at a 

significant level, that will be an indication of bettors not considering regression toward the mean. 

Betting Strategy 

 This paper will use the betting strategy devised by Lee and Smith7 for the NFL and will examine 

weekly matchups for the 64 teams in the Power 5 conferences. The strategy considers each team 

previous games with regard to covering their bets, and uses that knowledge to bet in favor of regression 

toward the mean. 

 With point spread bets, the success differential D is measured as the difference in points 

covered between Team 1 and Team 2 over the previous n weeks: 

𝐷 = ∑ 𝑆1,𝑡 −

𝑛

𝑡=1

∑ 𝑆2,𝑡

𝑛

𝑡=1

 

A positive success differential D indicates Team 2 is doing worse in total points covered. Betting with 

regression toward the mean in mind suggests putting $D on Team 2. If D is negative, the opposite is true 

and $D is placed on Team 1. Each week $1,000 worth of bets are placed, where D serves as the 

multiplier for every game. Therefore, a matchup where the success differential D = 50, would have twice 



as much money on it as a matchup with a D = 25. The total dollars bet are scaled to match $1000 exactly 

for every week. 

 Cumulative games will also be considered. In this strategy only the number of times the teams 

covered the spread or not are considered without care for the number of points. The total dollars are 

again scaled to $1000.  

 A similar strategy pertains to total line bets. The success differential for total lines between 

Team 1 and Team 2 over the previous n weeks is given by the total points over or under the line by the 

teams combined: 

𝐷 = ∑ 𝑆1,𝑡 +

𝑛

𝑡=1

∑ 𝑆2,𝑡

𝑛

𝑡=1

 

A positive D indicates the teams have combined to be over the total line in the previous games, thus the 

strategy bets $D on the under. The opposite is true for a negative D, where the over would be bet. As 

with point spread bets, $1000 will be placed every week, and scaled between matchups to ensure bets 

of that exact amount. 

 A cumulative games strategy is considered here as well, where only the number of times the 

teams were over or under the total points spread is considered. 

 Bookmakers play a large part in allowing these two methods to succeed. The previous matchups 

of Teams 1 and 2 are built into the spread and over/under already, allowing us to bet without worry for 

who the actual teams are playing, their coaching styles, or any other factors regarding the two teams. By 

virtue of the information already being built in, this allows for an easy way to test whether regression 

toward the mean is taken into account.  



 In this paper, the bets are recalculated looking back from only the previous game, all the way to 

the last 10 games. Doing so considers different assumptions for how many previous games a gambler 

looks back when deciding who to bet. A horizon of one would be only considering what happened in the 

previous game, where a horizon of 10 considers the summation of the previous 10 games.  

 Different cutoff levels for weekly bets are considered as well, with the backwards horizon being 

the entirety of the season. In theory, a higher success differential should result in higher winning 

percentages if regression toward the mean is occurring, as there is a higher level of abnormal 

performance. Therefore, for point spread bets, cutoff levels of 50, 100, 150, and 200 are considered 

while the cutoff levels for cumulative game bets are 2, 4, 6, 8, and 10. 

Data 

 Matchup betting lines and results for NCAA football games for the Power 5 conferences from 

2001-2018 came from The Gold Sheet11. Betting lines have some variation between sites, but generally 

lines are identical. Otherwise, large differences in spreads would result in bettors utilizing arbitrage, 

resulting in unequal money on each side.  Game locations and matchups were cross-referenced with 

Sports Reference12 to ensure accuracy between scores. Each season follows the current 64 Power 5 

conference teams in NCAA football. These teams make up the most prevalent and competitive 

conferences: Pac 12, Big 10, Big 12, ACC, SEC. However, there are a considerable number of non-

conference games played by these teams every year. While those games are used to determine the 

success differential for matchups, the only games bet on are games consisting of two Power 5 teams 

playing each other, regardless of conference. Furthermore, games that end is a push are not considered 

in our bets, as the money would be paid back without win or loss. 

 Table 1 displays summary statistics for point spreads. Whether the favorite covers or does not 

cover omits any pushes, where neither the team neither covers or does not. Averages spread and actual 



margins are from the standpoint of the favored team, while standard deviations and correlation 

coefficients are from the standpoint of the home team. The favored team covered the spread only 

47.6% of the time, meaning they did not the other 52.4%. Average point spreads are significantly lower 

than the average actual margin of victory, showing a large discrepancy between the line set and the 

actual outcome. Further evidence comes from a low correlation between point spreads and victory 

margin at 0.31. The average point spread and actual margin over the six-year period are significantly 

larger than what Smith and Capron8 found for the NFL. This is in line with Smith9 findings, where point 

spreads are larger for college football compared to the NFL.  

 Table 2 provides similar summary statistics for total lines. The over hits significantly less than the 

under (46.8% compared to 53.2%), but the average total score and average total line are almost 

identical. The correlation between the two is even lower than point spreads at 0.27. Interestingly, the 

correlation is the exact same as that found in the NFL by Smith and Capron8, indicating the low number 

is not a singularity within college football, but more likely a product of the bet type. 

 The low correlation levels between the two imply large amounts of randomness in college 

football. Unpredictable events drive differences between lines and actual outcomes. One team can have 

all the right things go their way, while the other can have nothing go right. A 109-yard field goal return 

to win the game. A ball thrown out of bounds that is batted back in for an interception. A one-handed 

catch pinned to the defender’s back. There are hundreds of famous examples in college football history 

of events that are impossible to predict beforehand. Due to these, the best team doesn’t always win, 

just as the favorite doesn’t always win. These uncertainties cause performance to regress toward the 

mean, as a team isn’t always going to have things go their way.  

 

 



Results  

 Betting with cutoffs give a better picture of whether regression to the mean is built into betting 

lines or not, as seen in Table 3. This shows the cutoff bets for cumulative points in against the spread 

bets. Using a binomial distribution to test the hypothesis that the probability of making a winning bet is 

0.50, the probability of picking this many or more winners in 1673 games (without cutoff) is 0.366, a 

number that is neither high nor low, but better than the null hypothesis of 50%. Interestingly, the cutoff 

at 50 points performed far and away the best, with a p-value of .0375. Afterwards, the numbers rise 

significantly, which is the opposite of expectations with cutoff bets. Higher cutoff levels should raise the 

overall win percentage if regression toward the mean is not considered within the lines. Here, the higher 

cutoff levels have very poor results, evident by the win percentage of 0 for the 200-point cutoff.  

 Table 4 provides similar data for various cutoff levels with total line bets. With no cutoff, the 

binomial distribution states that the probability of picking this many or more winners in 1675 games is 

0.5. This provides no evidence for regression toward the mean betting tactics as an effective means in 

over/under betting. The cutoff levels for over/under bets perform much worse compared to the point 

spread bets. Each cutoff boasts a negative return, some extremely so. Furthermore, the p-values, with 

the exclusion of the 50+ cutoff, are much higher than the null hypothesis of 0.50.  

 Table 5 shows the point spread bets when considering cumulative games as opposed to points. 

Here, there is clearly higher evidence of regression toward the mean betting working. Overall, the first 

four cutoff levels show promise with a low p-value. Although the 0 and 2 cutoff levels do not have 

positive returns, they still win more than 50% of the time. The higher cutoff levels perform similarly 

when considering cumulative games or points, both having very low win rates.  

 Table 6 shows the cumulative games cutoffs with regards to total points bets. Here, we see 

similar results to the cumulative points bets for the lower cutoffs. However, the high cutoffs preform 



extraordinarily well, with extremely high returns for the 10-game cutoff. This is completely opposite 

from the cumulative points cutoffs in Table 4. However, the poor performance at lower levels suggest 

this is more of coincidence with a low number of bets at this level instead of evidence of regression 

toward the mean. 

 Figure 1 shows the different horizons for cumulative points bets for both against the spread and 

over/under betting. While most of the horizons boast win rates higher than 50%, the levels are not 

enough to cover the vigorish. Alternatively, Figure 2 shows the same horizons for cumulative games 

bets. Here we see much higher win rates for the bets, but still very few positive returns over the period.  

Summary 

 Smith and Capron8 found compelling evidence that gamblers do not take regression toward the 

mean into account fully with NFL wagers on point spreads and over/under lines. This paper aimed at 

finding whether the same holds within college football, particularly given the wider margin of difference 

between college teams when compared to NFL teams. However, the general results did not find 

conclusive evidence for this theory.  

 There was little rhyme or reason to the varying win rates over years, especially when looking 

over different game horizons. While many of these ended up with positive win rates defined as greater 

than the null hypothesis of 50%, none won enough to cover the vigorish.  

 Overall, there is little evidence to suggest that regression toward the mean is not being taken 

into account by bettors in college football. There are many reasons as to why college football wagering 

does not follow the NFL, but there is no doubt that college football wagers do not see the same levels of 

regression toward the mean as seen in NFL wagers. 

 



 

 

Table 1:  

Point Spreads and Outcomes 
  

Favorite Point Spreads Actual Margin 
 

 
# of Games Cover No Cover Mean SD Mean SD Correlation 

2013 275 143 130 11.89 9.06 17.74 13.68 0.51 

2014 282 117 162 10.54 9.98 15.16 11.78 0.20 

2015 281 143 134 10.04 8.10 15.15 12.48 0.30 

2016 287 139 144 11.61 8.65 17.39 14.48 0.36 

2017 292 137 143 11.31 8.52 17.12 13.10 0.42 

2018 289 134 153 10.60 8.25 16.52 13.15 0.43 
         

Total 1706 813 866 11.00 8.79 16.52 13.16 0.31 

 

Table 2: 

Total Lines and Outcomes 
  

Score Total Line Total Score 
 

 
# of Games Over Under Mean SD Mean SD Correlation 

2013 275 138 133 58.03 26.80 57.00 19.22 0.20 

2014 282 115 163 55.79 11.46 55.08 19.97 0.36 

2015 281 131 147 57.12 30.64 56.02 21.08 0.22 

2016 287 138 144 57.38 10.32 58.01 19.51 0.52 

2017 292 134 156 55.39 8.89 54.90 17.87 0.49 

2018 289 142 144 55.73 8.08 56.20 20.37 0.49 
         

Total 1706 798 887 56.56 18.29 56.20 19.69 0.27 

 

 



 

Table 3: 

Cumulative Points Cutoff ATS 

Cutoff Bets Won % Won P-Value % Return 

0 1673 844 50.45% 0.366076 -0.94% 

50 611 328 53.68% 0.037491 0.80% 

100 137 75 54.74% 0.152621 7.38% 

150 28 13 46.43% 0.714206 -16.43% 

200 3 0 0.00% - -100.00% 

 

Table 4: 

Cumulative Points Cutoff O/U 

Cutoff Bets Won % Won P-Value % Return 

0 1675 838 50.03% 0.5 -5.58% 

50 626 314 50.16% 0.484061 -3.95% 

100 129 57 44.19% 0.920673 -14.63% 

150 16 7 43.75% 0.772751 -5.18% 

200 3 1 33.33% 0.875 -36.67% 

 

Table 5: 

Cumulative Games Cutoff ATS 

Cutoff Bets Won % Won P-Value % Return 

0 1404 726 51.71% 0.104852 -1.21% 

2 1173 603 51.41% 0.175069 -0.89% 

4 537 284 52.89% 0.097707 1.82% 

6 204 113 55.39% 0.070647 1.71% 

8 55 28 50.91% 0.5 -2.77% 

10 13 5 38.46% 0.866577 -22.27% 

 



 

Table 6: 

Cumulative Games Cutoff O/U 

Cutoff Bets Won % Won P-Value % Return 

0 1395 714 51.18% 0.195791 -4.46% 

2 1143 587 51.36% 0.187447 -4.74% 

4 556 273 49.10% 0.679553 -5.48% 

6 214 102 47.66% 0.773919 -6.37% 

8 70 38 54.29% 0.275209 6.93% 

10 22 14 63.64% 0.143139 21.67% 
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